Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301018, 2024.
Article in English | MEDLINE | ID: mdl-38574054

ABSTRACT

Drought and heat are the main abiotic constraints affecting durum wheat production. This study aimed to screen for tolerance to drought, heat, and combined stresses in durum wheat, at the juvenile stage under controlled conditions. Five durum wheat genotypes, including four landraces and one improved genotype, were used to test their tolerance to abiotic stress. After 15 days of growing, treatments were applied as three drought levels (100, 50, and 25% field capacity (FC)), three heat stress levels (24, 30, and 35°C), and three combined treatments (100% FC at 24°C, 50% FC at 30°C and 25% FC at 35°C). The screening was performed using a set of morpho-physiological, and biochemical traits. The results showed that the tested stresses significantly affect all measured parameters. The dry matter content (DM) decreased by 37.1% under heat stress (35°C), by 37.3% under severe drought stress (25% FC), and by 53.2% under severe combined stress (25% FC at 35°C). Correlation analyses of drought and heat stress confirmed that aerial part length, dry matter content, hydrogen peroxide content, catalase, and Glutathione peroxidase activities could be efficient screening criteria for both stresses. The principal component analysis (PCA) showed that only the landrace Aouija tolerated the three studied stresses, while Biskri and Hedhba genotypes were tolerant to drought and heat stresses and showed the same sensitivity under combined stress. Nevertheless, improved genotype Karim and the landrace Hmira were the most affected genotypes by drought, against a minimum growth for the Hmira genotype under heat stress. The results showed that combined drought and heat stresses had a more pronounced impact than simple effects. In addition, the tolerance of durum wheat to drought and heat stresses involves several adjustments of morpho-physiological and biochemical responses, which are proportional to the stress intensity.


Subject(s)
Droughts , Triticum , Triticum/genetics , Stress, Physiological/genetics , Heat-Shock Response/genetics , Genetic Variation
2.
AoB Plants ; 16(1): plad085, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38204894

ABSTRACT

The devastating effects and extent of abiotic stress on cereal production continue to increase globally, affecting food security in several countries, including Tunisia. Heat waves and the scarcity of rainfall strongly affect durum wheat yields. The present study aims to screen for tolerance to combined water and heat stresses in durum wheat at the juvenile stage. Three combined treatments were tested, namely: T0 (100% field capacity (FC) at 24 °C), T1 (50% FC at 30 °C), and T2 (25% FC at 35 °C). The screening was carried out based on morphological, physiological, and biochemical criteria. The results showed that the combined stress significantly affected all the measured parameters. The relative water content (RWC) decreased by 37.6% under T1 compared to T0. Quantum yield (Fv/m) and photosynthetic efficiency (Fv/0) decreased under severe combined stress (T2) by 37.15% and 37.22%, respectively. Under T2 stress, LT increased by 63.7%. A significant increase in osmoprotective solutes was also observed, including proline, which increased by 154.6% under T2. Correlation analyses of the combination of water and heat stress confirm that the traits RWC, chlorophyll b content, Fv/m, proline content, Fv/0 and leaf temperature can be used as reliable screening criteria for the two stresses combined. The principal component analysis highlighted that Aouija tolerates the two levels of stresses studied, while the genotypes Karim and Hmira are the most sensitive. The results show that the tolerance of durum wheat to combined water and heat stress involves several adaptation mechanisms proportional to the stress intensity.

3.
AoB Plants ; 15(3): plad022, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37228421

ABSTRACT

Local genetic resources could constitute a promising solution to overcome drought stress. Thus, eight (8) durum wheat landraces and one improved variety were assessed for drought tolerance in pots under controlled conditions. Three water treatments were tested: control (100 % of the field capacity (FC)), medium (50 % FC) and severe (25 % FC) stress. The assessment was carried out at the seedling stage to mimic stress during crop set-up. Results showed that increased water stress led to a decrease in biomass and morpho-physiological parameters and an increase in antioxidant enzyme activities. Severe water stress decreased the chlorophyll fluorescence parameters, relative water content (RWC) and water potential of the investigated genotypes by 56.45, 20.58, 50.18 and 139.4 %, respectively. Besides, the phenolic compounds content increased by 169.2 % compared to the control. Catalase and guaiacol peroxidase activities increased 17 days after treatment for most genotypes except Karim and Hmira. A principal component analysis showed that the most contributed drought tolerance traits were chlorophyll fluorescence parameters, RWC and electrolyte conductivity. Unweighted pair group method with arithmetic mean clustering showed that the landraces Aouija, Biskri and Hedhba exhibited a higher adaptive response to drought stress treatments, indicating that water stress-adaptive traits are included in Tunisian landraces germplasm.

4.
Microorganisms ; 9(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34946012

ABSTRACT

Durum wheat production is seriously threatened by Fusarium head blight (FHB) attacks in Tunisia, and the seed coating by bio-agents is a great alternative for chemical disease control. This study focuses on evaluating, under field conditions, the effect of seed coating with Trichoderma harzianum, Meyerozyma guilliermondii and their combination on (i) FHB severity, durum wheat grain yield and TKW in three crop seasons, and (ii) on physiological parameters and the carbon and nitrogen content and isotope composition in leaves and grains of durum wheat. The results indicated that the treatments were effective in reducing FHB severity by 30 to 70% and increasing grain yield with an increased rate ranging from 25 to 68%, compared to the inoculated control. The impact of treatments on grain yield improvement was associated with higher NDVI and chlorophyll content and lower canopy temperature. Furthermore, the treatments mitigated the FHB adverse effects on N and C metabolism by resulting in a higher δ13Cgrain (13C/12Cgrain) and δ15Ngrain (15N/14Ngrain). Overall, the combination outperformed the other seed treatments by producing the highest grain yield and TKW. The high potency of seed coating with the combination suggests that the two microorganisms have synergetic or complementary impacts on wheat.

5.
AoB Plants ; 13(4): plab034, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34316337

ABSTRACT

Salt stress is considered one of the most devastating environmental stresses, affecting barley growth and leading to significant yield loss. Hence, there is considerable interest in investigating the most effective traits that determine barley growth under salt stress. The objective of this study was to elucidate the contribution of osmotic and oxidative stress components in leaves and roots growth under salt stress. Two distinct barley (Hordeum vulgare) salt-stress tolerant genotypes, Barrage Malleg (BM, tolerant) and Saouef (Sf, sensitive), were subjected to 200 mM NaCl at early vegetative stages. Stressed and control leaves and roots tissue were assessed for several growth traits, including fresh and dry weight and plant length, as well as the content of osmoprotectants proline and soluble sugars. In addition, malondialdehyde content and activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as their corresponding gene expression patterns, were investigated. The results showed better performance of BM over Sf for leaf dry weight (LDW), root dry weight (RDW) and root length (RL). The salt-tolerant genotype (BM) had better osmoprotection against salt stress compared with the salt-sensitive genotype (Sf), with a higher accumulation of proline and soluble sugars in leaves and roots and a stronger antioxidant system as evidenced by higher activities of SOD, CAT and APX and more abundant Cu/Zn-SOD transcripts, especially in roots. Stepwise regression analysis indicated that under salt stress the most predominant trait of barley growth was Cu/Zn-SOD gene expression level, suggesting that alleviating oxidative stress and providing cell homeostasis is the first priority.

6.
Pathogens ; 10(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429997

ABSTRACT

Coating seeds with bio-control agents is a potentially effective approach to reduce the usage of pesticides and fertilizers applied and protect the natural environment. This study evaluated the effect of seed coating with Meyerozyma guilliermondii, strain INAT (MT731365), on seed germination, plant growth and photosynthesis, and plant resistance against Fusarium culmorum, in durum wheat under controlled conditions. Compared to control plants, seed coating with M. guilliermondii promoted the wheat growth (shoot and roots length and biomass), and photosynthesis and transpiration traits (chlorophyll, ɸPSII, rates of photosynthesis and transpiration, etc.) together with higher nitrogen balance index (NBI) and lower flavonols and anthocyanins. At 21 days post infection with Fusarium, M. guilliermondii was found to reduce the disease incidence and the severity, with reduction rates reaching up to 31.2% and 30.4%, respectively, as well as to alleviate the disease damaging impact on photosynthesis and plant growth. This was associated with lower ABA, flavonols and anthocyanins, compared to infected control. A pivotal function of M. guilliermondii as an antagonist of F. culmorum and a growth promoter is discussed.

7.
Plant Sci ; 251: 44-53, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27593462

ABSTRACT

Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.


Subject(s)
Sodium Chloride/metabolism , Stress, Physiological , Triticum/physiology , Carbon/metabolism , Conservation of Natural Resources , Genotype , Mediterranean Region , Nitrogen/metabolism , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...